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Kinetics of phase ordering of nematic liquid crystals confined in porous media
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Employing a time-dependent Ginzburg-Landau model, we investigate the influence of a random field on the
phase ordering kinetics of nematic liquid crystals. We find that in the scaling regime the effect of random field
(slowing down the growth of nemajicdominates over initial conditions for spatial dimensionality2,
whereas ford>2 the random field has all its effect in the “initial-growth” regime. In this last case the mere
confinement of liquid crystals is insufficient to produce slow growth of the nematic order.
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PACS numbsd(s): 64.70.Md, 64.60.Cn, 68.10.Jy

Recently many studies have been devoted to liquid crysness we have found a reduced temperature at the transition,
tals confined to randomly interconnected networks of poresogether with a first order phase transition which ends at a
(for review see Refd.1-5]). Such systems raise fundamental tricritical point, beyond which the transition becomes con-
issues, such as the effect of finite size and quenched disordénuous. We have used this model to obtain the domain wall
on phase transitions, orientational order, elastic propertiesolutions of the time-dependent Ginzburg-LandabGL)
and director field. The simplest liquid crystal state is theequation. The random orienting field leads to smaller veloc-
nematic phase where the molecules exhibit only orientationdty of the interface and to larger interface width.
long-range order and no translational long-range order. The When a system is quenched from a high-temperature dis-
isotropic (with neither orientational nor translational long- ordered phase to a lower temperature where its ordered phase
range order to nematic transition of thermotropic liquid s thermodynamically favored, it evolves in time toward the
crystals embedded in various kinds of porous medero-  |atter (phase-ordering processt has been well established
gels, Vycor glass, controlled porous glass, Anapore anghat in the late stages of ordering a scaling regime is entered,
Nucleopore membranes are commonly yskds been ex-  characterized by a single time-dependent length scéfl,
perimentally investigated using various techniques: calorimg, o, that the domain structure is independent of time when
etry [6-10}, dynamic light scatterind11-19, static light lengths are scaled Hy(t) [24]. In this paper, following Fil-
scatte.r|ng[6,.14], magnetic b|refr|ngencé15], NMR [7,16], ipe et al.[25], we study the random field effect on the phase-
and dielectric spectroscopL7]. The most important results . . T .

ordering dynamics of a nematic liquid crystal in a porous

inferred from these studies are the following. The bulk Wedium when its isotropic liquid precursor is cooled quickly

isotropic-nematic phase transition temperatures are shifte : t here th tic oh < th d .
down a few degrees and in some cases the character of trafy- & temperature where the nematic phase Is thermodynami-

sition changes(ii) Even at temperatures far above the bulk ¢@ly stable and the isotropic one is metastablgercoolefl
isotropic-nematic phase transition temperature there exists a 1€ order parameter for a nematic liquid crystal is a
weak residual nematic ordering. Consequently, the corretraceless symmetric second-rank tensf@6] Qj(r,t)
sponding phase is often called paranematic rather than ise= Q(F,t)(?’ninj_ 8;)/2 where the unit vecton is the nem-
tropic. (iii) Monte Carlo simulation$18] show that in Some  4tic girector. In the problem we consider, we shall suppose
cases the nematic order is replaced by a quasi-long-rangg pe fixed in space and time, so that the relevant physics is

nematic (usually called speronematiphase.(iv) The ran- . -
dom preferential orientation of liquid crystals along the poreg'ven by the scalafonconservelorder pa_rameteQ(r,t)._
surface(whose normal changes direction randomly over aThe Landag—de Gennes free energy funct|ona| appropriate to
persistent lengthinfluences the dynamics of the isotropic to T?dfT %lz}sotgopyfne;natlcdr?odel 'tshg“t;elnkﬁmgj:f(fb q
nematic phase transition only in the *“initial-growth” re- | ’t_ e) tW efretﬁ, o an er:tjre .f u ,rant_orr|1, anTh
gime. In the late stage of the dynamics, mere confinement of aouc Parts of he energy density, respectively. The

—_— L - symmetry-allowed expression fdi, is given by fy=a(T
:Eg Ir:gt#liticcry;;?rl]ziﬁgllguﬁlC|ent to produce slow growth of 1) Tr(Q?) — BTH(Q?) + CLTH(Q?) 1% whereT* is the bulk

Following de Gennes' idea$20], the theoretical ap- undercooled temperature limit. The element of randomness

proacheg21,27 used for the explanation of properties and cOmes in when one permits the director arigo point in
behavior of confined liquid crystals are based on randomarbitrary directions and to change significantly over a spacial
field-type models. In a previous pag@3], which we denote ~ scaleR,. Using Imry-Ma real-space domain argumef2g]
henceforth as paper I, we have extended the random anisdsee also papen),| f, is given by f,= —D(Rq/R,) ¥°Q

ropy nematic spin modéR1] to consider the effect of com- WhereRq is the characteristic scale of change of the order
petition between the strength of the random orienting fieldparameter. The final ter, comes from the elastic free en-
and the elastic constant on the isotropic-nematic phase traggy densityf .= Ll(ﬁink)2/2+ Lz(aiQij)2/2=3LQ2R§2/4,
sition. In the limit of relative low randomness the existencewherelL; andL, are elastic constants amd=3L/2+L,/4.

of a triple point was predicted. For relatively large random-This term must be included because the random anisotropy is
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causing the local orientation to wander in spaceRgn We om Q’(m)
note that the ratio of disorder to elastic constant is defined by i ’m— —(1- |[Vm|?)—c. 4)
the nondimensional parameteéy= DRglL. Introducing a Q'(m)

new length scalé=(R%—R3)"?and scaling the variables in o _ _
= The principal role of the double-well “potentialt(Q) is

i — — * 2

mﬁ foIIow2|n92 _\ivay Q:_GCQIZB 'T_324—a_(T 2T3 )CQB—' to establish and maintain well-defined interfaces. It follows
L=12CL/B Ra_’g__ ¢/R,,D=96C"D/B ! 1‘-—.24 Cf/B",A that the detailed form of (Q) is irrelevant to the large-scale
=8CA/B, eliminating overbars, and minimizing the free en- ¢ cture. Following Bray and Humayui80], we choose
ergy density with respect t§, we obtain Q(m) to satisfyQ”(m)=—mQ’ (m) which is equivalent to

a particular form of the potentiR5]. Locating the center of

the wall atm=0, we obtain the wall profile functio@(m)

=[Qst Qp—(Qs—Qp)erf(m/\/E)]/Z. After Fourier trans-
(1) formation, Eq.(4) becomes

D
fp=—DQ+ ( T+ K) Q?-2Q3%+Q* when Q<3A/4,

the free energy density corresponding to the paranematic amg(t) 5
phase and o LTk Fa)]mg(t) —cdig, 5
27

fo= — =—DA3Q 2+ rQ2—2Q%+Q* when Q>3A/4, where a(t)=1—(|Vm|?). Considering the initial con-
256 ditions for m to be Gaussian distributed, with zero mean
(20 and correlator (in  Fourier space (mg(0)mg (0))
=A(2m)98(k+k’) (d i tial di ionali d
the free energy density corresponding to the speronematic ( ™ ) , S spata imensionality ?n
phase. solving Eg. (5) fo(rd+k2?f40 comgonents ofm, one(dilgcljzs
We take the dynamics to be given by TDGL equationmi(t):mlz(od)/z(t/tO) exp(—k°)  where  tg _
with the dimensionless form#Q/at—V2Q=—f'(Q). We =dA/4(87) %< [25] from which the two-time correlator in
choose an appropriate form of the free energy density whicke@! space follows immediately
interpolates betweeffip valid for z—o and fg valid for z

di4
— —o (see paper)| AVtty [ Atgt
(see papen CaL=(mnym(2)y= e ”2>
1 1 , (ti+ty)
f:TQ2_2Q3+Q4+_(V1+V2)+_(V1_V2)tanh_, r2
2 2 w ><exp(—— (6)
©) 4(ty+ty))’

wherev,;=—-DQ+ DQZIIA is the free energy der]sity gener- where 1 and 2 are usual shorthand for space-time points
ated by3 th_e2 rand(_)m field for the paranematic phasg, (r1,ty) and (,,t,), andr=|r,;—r,|. In the scaling regime
=27DA°Q 7/256 is the corresponding form for the Sper- (t_, ) the correlation function of the fiel@ is obtained as
onematic phase, and is the characteristic thickness of the C(1,2)=[(Qs+ Qp)2+ (Qs— Qp)2 sin 1y]/4 wherey is the
interface. _ normalized correlator

Considering that the system allows an isothermal base

state in which the speronematic and paranematic phases are dia

separated by a planar interface of finite width which propa- Y(1,2)= Co(1.2) — atit,

gates with velocityc into the paranematic phase, we look for ’ VCo(0t1)Cp(0t,) | (t;+1,)2

solutions of the formQ(g,t) = Q(g——ct)=Q(g’), whereg is 5

a coordinate normal to the interface. The TDGL equation Xex;{ _ r @)
yields Q"+cQ’'=f'(Q), subject to boundary conditions 4(t+ty))’

Q(—»)=Qg and Q(«)=Qp. This ordinary differential
equation has the solutionnQ(g’)=[Qs+Qp—(Qs  which for equal times t{=t,=t) simplifies to y(1,2)
—Qp)tanhg’/w]/2 with the characteristic thickness of the in- = exp(—r?/8t).
terfacew= \2/(Qs— Qp) and its velocityc=3\2(Qs+ Qp Thus, thek#0 components ofn are unchanged by the
—1)—y2D/A(Qs—Qp) (see papen! Thus the kinetics of  velocity or equivalently by the random field. In this case the
nematic domain growth is slowed down by the rangom fieldyyell depths of the “potential’f(Q) are equal, the only driv-

In the “Gaussian closure” schemes a new fieddr,t) is  ing force is interface curvature which generates the well-
introduced, which varies smoothly on the domain scale andénown t*? growth law[24].
whose zeros defines the positions of the walls. Generalizing Tq solve Eq.(5) for k=0 components ofn, we allow for
:\Aazelgko SF(JPV)OX'n;a';{Of‘ZdEﬂb(St‘;e 5;:3? Ref.25]), :hi trans- 3 uniform bias in the initial state, taking Gaussian initial
ormationQ(m) is defined by the flat moving interface pro- " : = o) —
file function which satisfie€)”(m)+cQ'(m)=f'(Q) with condiions form with nonzero mean(m(r,0))=mo and
boundary conditionsQ(—)=0Qs and Q()=Qp. With only i shott—ranged i correlatuzns (m(r,0)m(0,0)).
this choice, rewriting TDGL equation in terms of, gives  ={(m(r,0)m(0,0)) —(m(r,0))>=A5(r). Solving Eq.(5), we
[29] obtain the average value of(r t)
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) £\ (d+2)4 .
<m(r,t)>:m0(_) _Cf t/—(d+2)/4dt/ (8)
to to

and also the previous expressiof@ and (7) for the con-
nected pair correlato€,(1,2) and normalized correlatoy,
respectively.

The averagdexpectation value and the relative fluctua-
tion of the order parameté&) are given by

1 1 _m
(@=35(Qs+Qe)=5(Qs QP)erf( Z[CO(OI)+1])
©

and
(Q)— ()™
(Q)
[1—erP((m)/2[Cy(0t) +1])]*2

" (Qs+Qp)/(Qs—Qp) —erf((m)/\2[Co(04) + 1))
(10
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where Cy(0t) =(m?).=(m?)—(m)?=4t/d. In the scaling
regime the argument of the error function is given by
(m)/2Cy(0,t). The biasm, in the initial Gaussian condi-
tions gives a contribution of ordet® for any d, but the
contribution from velocity(or equivalently from the random
field) is t¥2 for d<2, tY2Int/ty for d=2, andt?* for d>2.
Thus, for larget, the velocity(random field dominates over

my for d=<2 (continues to have an effect at late times
whereas ford>2 the random field has all its effect in the
“initial-growth” regime (times of orderty). These results
are similar with those obtained in Rdfl9] and[25]. The

two main approximations used in this paper involve the con-
sideration of a scalar order parameter and the decoupling of
the temperature field. Nematic liquid crystals are described
by a nonconserved traceless symmetric tensor field. The

presence of the inversion symmet@—é— ﬁ) means that, in
addition to the monopole defects of th€3pmodel, the nem-
atic also possesses staBlstring defects in which the direc-
tor rotates throughr on encircling the string. The presence
of such defects generateska® structure factor tail at large
kL(t) [24]. The thermal couplingincluding the effect of
latent heat emission at the interfacan have profound con-
sequencef3l].
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