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Kinetics of phase ordering of nematic liquid crystals confined in porous media

Vlad Popa-Nita and Doru-Cosmin Constantin
Faculty of Physics, University of Bucharest, P.O. Box MG-11, Bucharest 76900, Romania

~Received 1 February 1999!

Employing a time-dependent Ginzburg-Landau model, we investigate the influence of a random field on the
phase ordering kinetics of nematic liquid crystals. We find that in the scaling regime the effect of random field
~slowing down the growth of nematic! dominates over initial conditions for spatial dimensionalityd<2,
whereas ford.2 the random field has all its effect in the ‘‘initial-growth’’ regime. In this last case the mere
confinement of liquid crystals is insufficient to produce slow growth of the nematic order.
@S1063-651X~99!02508-8#

PACS number~s!: 64.70.Md, 64.60.Cn, 68.10.Jy
ry
re
ta
rd

tie
he
n

Th
-

d

an

im

s

ift
tr
lk
ts
rr
is

n

re
r
to
-
t
of

nd
m

is
-
el
tra
ce
m

ition,
t a
n-
all

oc-

dis-
hase
he
d
red,

hen

e-
us
ly
ami-

a

e
s is

te to

he

ess

cial

er
-

y is
Recently many studies have been devoted to liquid c
tals confined to randomly interconnected networks of po
~for review see Refs.@1–5#!. Such systems raise fundamen
issues, such as the effect of finite size and quenched diso
on phase transitions, orientational order, elastic proper
and director field. The simplest liquid crystal state is t
nematic phase where the molecules exhibit only orientatio
long-range order and no translational long-range order.
isotropic ~with neither orientational nor translational long
range order! to nematic transition of thermotropic liqui
crystals embedded in various kinds of porous media~aero-
gels, Vycor glass, controlled porous glass, Anapore
Nucleopore membranes are commonly used! has been ex-
perimentally investigated using various techniques: calor
etry @6–10#, dynamic light scattering@11–13#, static light
scattering@6,14#, magnetic birefringence@15#, NMR @7,16#,
and dielectric spectroscopy@17#. The most important result
inferred from these studies are the following.~i! The bulk
isotropic-nematic phase transition temperatures are sh
down a few degrees and in some cases the character of
sition changes.~ii ! Even at temperatures far above the bu
isotropic-nematic phase transition temperature there exis
weak residual nematic ordering. Consequently, the co
sponding phase is often called paranematic rather than
tropic. ~iii ! Monte Carlo simulations@18# show that in some
cases the nematic order is replaced by a quasi-long-ra
nematic~usually called speronematic! phase.~iv! The ran-
dom preferential orientation of liquid crystals along the po
surface~whose normal changes direction randomly ove
persistent length! influences the dynamics of the isotropic
nematic phase transition only in the ‘‘initial-growth’’ re
gime. In the late stage of the dynamics, mere confinemen
the liquid crystals is insufficient to produce slow growth
the nematic domains@19#.

Following de Gennes’ ideas@20#, the theoretical ap-
proaches@21,22# used for the explanation of properties a
behavior of confined liquid crystals are based on rando
field-type models. In a previous paper@23#, which we denote
henceforth as paper I, we have extended the random an
ropy nematic spin model@21# to consider the effect of com
petition between the strength of the random orienting fi
and the elastic constant on the isotropic-nematic phase
sition. In the limit of relative low randomness the existen
of a triple point was predicted. For relatively large rando
PRE 601063-651X/99/60~2!/1812~3!/$15.00
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ness we have found a reduced temperature at the trans
together with a first order phase transition which ends a
tricritical point, beyond which the transition becomes co
tinuous. We have used this model to obtain the domain w
solutions of the time-dependent Ginzburg-Landau~TDGL!
equation. The random orienting field leads to smaller vel
ity of the interface and to larger interface width.

When a system is quenched from a high-temperature
ordered phase to a lower temperature where its ordered p
is thermodynamically favored, it evolves in time toward t
latter ~phase-ordering process!. It has been well establishe
that in the late stages of ordering a scaling regime is ente
characterized by a single time-dependent length scaleL(t),
such that the domain structure is independent of time w
lengths are scaled byL(t) @24#. In this paper, following Fil-
ipe et al. @25#, we study the random field effect on the phas
ordering dynamics of a nematic liquid crystal in a poro
medium when its isotropic liquid precursor is cooled quick
to a temperature where the nematic phase is thermodyn
cally stable and the isotropic one is metastable~supercooled!.

The order parameter for a nematic liquid crystal is

traceless symmetric second-rank tensor@26# Qi j (rW,t)
5Q(rW,t)(3ninj2d i j )/2 where the unit vectornW is the nem-
atic director. In the problem we consider, we shall supposnW
to be fixed in space and time, so that the relevant physic
given by the scalar~nonconserved! order parameterQ(rW,t).
The Landau–de Gennes free energy functional appropria
random anisotropy nematic model is given byF@Q#5*( f b
1 f r1 f e)dV where f b , f r , and f e are the bulk, random, and
elastic parts of the energy density, respectively. T
symmetry-allowed expression forf b is given by f b5a(T
2T* )Tr(Q2)2BTr(Q3)1C@Tr(Q2)#2 whereT* is the bulk
undercooled temperature limit. The element of randomn
comes in when one permits the director axisnW to point in
arbitrary directions and to change significantly over a spa
scaleRa . Using Imry-Ma real-space domain arguments@27#
~see also paper I!, f r is given by f r52D(RQ /Ra)23/2Q
whereRQ is the characteristic scale of change of the ord
parameter. The final termf e comes from the elastic free en
ergy densityf e5L1(] iQjk)2/21L2(] iQi j )

2/253LQ2RQ
22/4,

whereL1 andL2 are elastic constants andL53L1/21L2/4.
This term must be included because the random anisotrop
1812 © 1999 The American Physical Society
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causing the local orientation to wander in space onRQ . We
note that the ratio of disorder to elastic constant is defined
the nondimensional parameterL5DRa

2/L. Introducing a
new length scalej5(RQ

2 2Ra
2)1/2 and scaling the variables i

the following way Q̄56CQ/B,t524a(T2T* )C/B2,
L̄512CL/B2Ra

2 ,j̄5j/Ra ,D̄596C2D/B3, f̄ 5242C3f /B4,L̄
58CL/B, eliminating overbars, and minimizing the free e
ergy density with respect toj, we obtain

f P52DQ1S t1
D

L DQ222Q31Q4 when Q,3L/4,

~1!

the free energy density corresponding to the paranem
phase and

f S52
27

256
DL3Q221tQ222Q31Q4 when Q.3L/4,

~2!

the free energy density corresponding to the speronem
phase.

We take the dynamics to be given by TDGL equati
with the dimensionless form]Q/]t2¹2Q52 f 8(Q). We
choose an appropriate form of the free energy density wh
interpolates betweenf P valid for z˜` and f S valid for z
˜2` ~see paper I!,

f 5tQ222Q31Q41
1

2
~v11v2!1

1

2
~v12v2!tanh

z

w
,

~3!

wherev152DQ1DQ2/L is the free energy density gene
ated by the random field for the paranematic phase,v2
527DL3Q22/256 is the corresponding form for the spe
onematic phase, andw is the characteristic thickness of th
interface.

Considering that the system allows an isothermal b
state in which the speronematic and paranematic phase
separated by a planar interface of finite width which pro
gates with velocityc into the paranematic phase, we look f
solutions of the formQ(g,t)5Q(g2ct)5Q(g8), whereg is
a coordinate normal to the interface. The TDGL equat
yields Q91cQ85 f 8(Q), subject to boundary condition
Q(2`)5QS and Q(`)5QP . This ordinary differential
equation has the solutionnQ(g8)5@QS1QP2(QS
2QP)tanhg8/w#/2 with the characteristic thickness of the i
terfacew5A2/(QS2QP) and its velocityc53A2(QS1QP

21)2A2D/L(QS2QP) ~see paper I!. Thus the kinetics of
nematic domain growth is slowed down by the random fie

In the ‘‘Gaussian closure’’ schemes a new fieldm(rW,t) is
introduced, which varies smoothly on the domain scale
whose zeros defines the positions of the walls. Generaliz
Mazenko approximation@28# ~see also Ref.@25#!, the trans-
formationQ(m) is defined by the flat moving interface pro
file function which satisfiesQ9(m)1cQ8(m)5 f 8(Q) with
boundary conditionsQ(2`)5QS and Q(`)5QP . With
this choice, rewriting TDGL equation in terms ofm, gives
@29#
y
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]m

]t
5¹2m2

Q9~m!

Q8~m!
~12u¹mu2!2c. ~4!

The principal role of the double-well ‘‘potential’’f (Q) is
to establish and maintain well-defined interfaces. It follo
that the detailed form off (Q) is irrelevant to the large-scal
structure. Following Bray and Humayun@30#, we choose
Q(m) to satisfyQ9(m)52mQ8(m) which is equivalent to
a particular form of the potential@25#. Locating the center of
the wall atm50, we obtain the wall profile functionQ(m)
5@QS1QP2(QS2QP)erf(m/A2)#/2. After Fourier trans-
formation, Eq.~4! becomes

]mkW~ t !

]t
5@2k21a~ t !#mkW~ t !2cdkW ,0W , ~5!

where a(t)512^u¹mu2&. Considering the initial con-
ditions for m to be Gaussian distributed, with zero me
and correlator ~in Fourier space! ^mkW(0)mkW8(0)&
5D(2p)dd(kW1kW8) (d is spatial dimensionality! and
solving Eq. ~5! for kWÞ0W components ofm, one finds
mkW(t)5mkW(0)(t/t0)(d12)/4exp(2k2t) where t0

(d12)/2

5dD/4(8p)d/2 @25# from which the two-time correlator in
real space follows immediately

C0~1,2![^m~1!m~2!&5
4At1t2

d S 4t1t2

~ t11t2!2D d/4

3expS 2
r 2

4~ t11t2! D , ~6!

where 1 and 2 are usual shorthand for space-time po
(rW1 ,t1) and (rW2 ,t2), and r 5urW12rW2u. In the scaling regime
(t˜`), the correlation function of the fieldQ is obtained as
C(1,2)5@(QS1QP)21(QS2QP)2 sin21g#/4 whereg is the
normalized correlator

g~1,2![
C0~1,2!

AC0~0,t1!C0~0,t2!
5S 4t1t2

~ t11t2!2D d/4

3expS 2
r 2

4~ t11t2! D , ~7!

which for equal times (t15t25t) simplifies to g(1,2)
5 exp(2r2/8t).

Thus, thekWÞ0W components ofm are unchanged by the
velocity or equivalently by the random field. In this case t
well depths of the ‘‘potential’’f (Q) are equal, the only driv-
ing force is interface curvature which generates the w
known t1/2 growth law @24#.

To solve Eq.~5! for kW50W components ofm, we allow for
a uniform bias in the initial state, taking Gaussian init
conditions for m with nonzero mean̂ m(rW,0)&5m0 and
only short-ranged correlations ^m(rW,0)m(0W ,0)&c

5^m(rW,0)m(0W ,0)&2^m(rW,0)&25Dd(rW). Solving Eq.~5!, we
obtain the average value ofm(rW,t)
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^m~rW,t !&5m0S t

t0
D (d12)/4

2cE
t0

t

t82(d12)/4dt8 ~8!

and also the previous expressions~6! and ~7! for the con-
nected pair correlatorC0(1,2) and normalized correlatorg,
respectively.

The average~expectation! value and the relative fluctua
tion of the order parameterQ are given by

^Q&5
1

2
~QS1QP!2

1

2
~QS2QP!erfS ^m&

A2@C0~0,t !11#
D
~9!

and

~^Q2&2^Q&2!1/2

^Q&

5
@12erf2~^m&/A2@C0~0,t !11# !#1/2

~QS1QP!/~QS2QP!2erf~^m&/A2@C0~0,t !11# !
,

~10!
,

e

,

.

.

tt.

.

where C0(0,t)5^m2&c5^m2&2^m&254t/d. In the scaling
regime the argument of the error function is given
^m&/A2C0(0,t). The biasm0 in the initial Gaussian condi-
tions gives a contribution of ordertd/4 for any d, but the
contribution from velocity~or equivalently from the random
field! is t1/2 for d,2, t1/2 ln t/t0 for d52, andtd/4 for d.2.
Thus, for larget, the velocity~random field! dominates over
m0 for d<2 ~continues to have an effect at late times!,
whereas ford.2 the random field has all its effect in th
‘‘initial-growth’’ regime ~times of ordert0). These results
are similar with those obtained in Ref.@19# and @25#. The
two main approximations used in this paper involve the c
sideration of a scalar order parameter and the decouplin
the temperature field. Nematic liquid crystals are describ
by a nonconserved traceless symmetric tensor field.
presence of the inversion symmetry (nW˜2nW ) means that, in
addition to the monopole defects of the O~3! model, the nem-
atic also possesses stable1

2 string defects in which the direc
tor rotates throughp on encircling the string. The presenc
of such defects generates ak25 structure factor tail at large
kL(t) @24#. The thermal coupling~including the effect of
latent heat emission at the interface! can have profound con
sequences@31#.
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